At MBL: Plastics Suspect in Lobster Illness

Aug16

Shell Disease Lobster

This drooping lobster is missing limbs and painted with dark spots, the tell-tale signs of shell disease. (Credit: Joseph Caputo/MBL)

The 4th installment of “At MBL,” Joseph Caputo’s experience as a science writing intern at the Marine Biological Laboratory in Woods Hole, Massachusetts. The following story originally appeared, along with more photos, on the MBL Website.

The search for what causes a debilitating shell disease affecting lobsters from Long Island Sound to Maine has led one Marine Biological Laboratory (MBL) visiting scientist to suspect environmental alkylphenols, formed primarily by the breakdown of hard transparent plastics.

Preliminary evidence from the lab of Hans Laufer suggests that certain concentrations of alkylphenols may be interfering with the ability of lobsters to develop tough shells. Instead, the shells are weakened, leaving affected lobsters susceptible to the microbial invasions characteristic of the illness.

“Lobsters ‘know’ when their shell is damaged, and that’s probably the reason when they have shell disease, why they molt more quickly,” says Laufer, a visiting investigator at the MBL for over 20 years and professor emeritus of molecular and cell biology at the University of Connecticut. “But ultimately, they still come down with the disease. And we think the presence of alkylphenols contributes to that.”

Like any crustacean, lobsters shed their shells multiple times in one lifetime. After molting, the outer skin of the soft and exposed lobster will begin to harden. It is here that Laufer thinks the alkylphenols are doing their damage. At this point, a derivative of the amino acid tyrosine, whose function is to harden the developing shell, is incorporated. It is known that alkylphenols and tyrosine are similarly shaped and Laufer suspects that the toxin may be blocking tyrosine from its normal functions. He is at MBL this summer to measure the amount of competition between the two molecules. Alkyphenols are also known to act as endocrine disruptors.

Laufer discovered the presence of alkylphenols in lobsters serendipitously while investigating a tremendous lobster die off at Long Island Sound in 1999, when shell disease, first observed in the mid-1990s, was noted to be on the rise. Although an unusually hot summer, it was also the first time New York City sprayed mosquito populations to prevent the spread of West Nile virus. Laufer, who began his career as an insect endocrinologist, suspected the toxins from the sprayings may have contributed to the lobster die off. In 2001, while searching for the mosquito toxins in lobsters, he instead found alkylphenols.

“It’s a real problem,” Laufer says. “Plastics last a long time, but breakdown products last even longer. Perhaps shell disease is only the tip of the iceberg of a more basic problem of endocrine disrupting chemicals in marine environments.”

Posted by Joseph, under At MBL  |  Date: August 16, 2008
No Comments »

Leave a Reply

google

couk